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The Inner Planets Simulation 

Developed by Damian Lall, Albert Sun, and Allen Wang 

In our program, we simulated a Sun and Inner planet system. Our project was written in 
Python and used the PyGame library to handle drawing objects and the time system. The 
main physics and math concepts we employed were finding the angles between objects, the 
universal law of gravitation, and equations for calculating energy. 

By inputting values found in reality, the simulation can accurately calculate variables that 
match reality, making this simulation a close replica to the inner planets of our solar 
system. However, this simulation only uses the Sun, Mercury, Venus, Mars, and Earth in the 
system, meaning other celestial bodies are excluded in the system calculations. 

Physics and Math Concepts 
 

Universal Law of Gravitation 

 

 

The following code is part of a method executed in a nested for loop; each celestial body 
has the equation applied with respect to every other celestial body, reflecting Newton 3rd 
Law of Motion. At the end, the gravity force of the Sun is then applied to the rest of the 
planets. However, the sun itself does not have this equation applied due to the opposite 
reaction force being too small to affect the Sun. Using the formula  

a GM m /rmplanet =  sun/planet planet
2  

 GM /raplanet =  sun/planet
2  
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and applying it to every planet to each other, we can have a simulation accurate to that in 
reality. Because the gravitational constant uses meters for distance, pixel distances must be 
adapted. Through normalization/denormalization, we can convert to meters for 
calculations. ​Normalization and Denormalization will be explained in a later section. 
However, the gravitational pull from the planets relative to the sun would be so small, the 
simulation would run around the same way without it. We decided to keep it for accuracy 
sake if there were certain orbits that depend on it. 

Change in Angle Between Bodies  

 

This code finds the angle between two bodies, which is then used to find the proper change 
in velocity and its direction. First converting the pixel units into meters for calculations and 
utilizing python’s atan2() function, we find the change in y and change in x to find the 
dy/dx and eventually the slope. The slope then returns an angle in radians, giving us the 
direction of acceleration. Note that the number in the atan2 function does not signify a 
square, but denotes it as the second version of the method, as the original did not take 
positive and negative signs into account. 

 

Applying the acceleration vector to each component based on angle helps alter the 
direction of the velocity vector, keeping both vectors perpendicular to each other. ​Dividing 
by time_constant will be explained in a later section​, but applying acceleration (or change 
in velocity) in a constant time frame gives us a realistic change in velocity and eventually 
distance. 

Total Energy Conversion 

 

This code finds the total energy of the entire system, showing that within a closed system, 
energy is conserved in elliptical orbits when running. To prevent each update from 
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stacking on each other, the energy calculation is reset for every update, recalculating the 
energy from the entire system again.  

We used this formula to determine the energy between two planets: 

 KE E 1/2m v M m /r  .. M m /rE =  + P =  self
2 − G planet 1 self

2 − . − G planet n self
2  

For each planet, we looped through and added the energy with every other planet and the 
sun, calculating total energy. Taking the distance between them, calculating the planet’s 
current velocity, and taking each looped planet’s mass, we can find the potential energy 
from each celestial body. Adding it back to the kinetic energy of the planet and running the 
simulation, we can see that energy is conserved as it remains a constant value. 

Game Concepts 
 

Distance Normalization 
In order to use accurate values in the simulation, while still displaying the system onscreen, 
we determine a normalization constant that we use to scale the real-life distances down to 
pixel drawing distances that fit on the screen. The current normalization constant is 1 pixel 
per every 500,000 kilometers. However, due to the comparative sizes between planet 
radius and distance, we decided to keep the radius not to scale. 

 

Game Ticks 
Having a frame rate of sixty frames per second, every one-sixtieth of a second, the game 
goes through its main game loop. The main loop executes everything necessary to keep the 
game going: calculating angles, acceleration, velocity, position, and everything else you 
could imagine. The game also repaints the screen with the updated position values. 
Because of this, a naive implementation would inadvertently calculate and increase the 
speed of the simulation in accordance with a higher frame rate. To account for this, we 
divide every change to movement by a time constant, equivalent to the number of frames 
per second. For example, if we wished to apply a velocity of five meters per second, a naive 
implementation would add the velocity of five sixty times. However, divided by the time 
constant, we would only add one twelfth of a meter every tick, which would sum to five 
over the course of sixty ticks in a second. 
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Accuracy 
A perfectly accurate simulation would be very boring, as the time it takes for the earth to 
revolve around the sun would take a full year, just like in real life! To account for this, we 
can divide the time constant by a desired speed multiplier. The speed multiplier is 
equivalent to how many times faster the simulation is to reality, which can make a year in 
the simulation go by in seconds. The more ticks, the smaller and more precise the 
calculations will be, as there will be less changes in movement between shorter lengths of 
time. The opposite also holds true, with great of changes in movement between ticks, even 
recalculated dozens of times in a second, causing the simulation to lose accuracy. This can 
be observed by increasing the simulation speed to values greater than about one million, 
afterwhich the orbits will begin to drift out of their orbits. This can be remedied by 
increasing the frame rate; however, one cannot increase the frame rate infinitely due to 
hardware constraints. As simulating every frame involves calculating the complicated 
physics equations described above, an excessively high rate would start to skip frames, 
especially on less powerful hardware, potentially causing more inaccuracies. 

 

 
 
 
 
 
 
An example of the inaccuracies that 
arise from a high speed 
multiplier. It may look pretty, but 
we’d have some pretty extreme 
seasons if this reflected reality​. 
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Observations 
 

Applying Values from Reality 
To test the simulation, we applied values from real life. This may sound difficult, but once 
we had proven the accuracy of our simulation, it was the easiest way to simulate other 
objects in space, as what works in real life should work in an accurate simulation. Of 
course, we would still have to change the scale depending on the sizes of the orbits. 

 

Referring to a NASA fact sheet about each planet, 
we decided to use the perihelion of each planet’s 
orbit as the starting point. This also means that 
each planet will be going at their maximum 
velocity, given by the NASA fact sheet once again. 

Waiting for each planet’s orbit to finish, we 
stopped the simulation with the ​Spacebar ​key 
when the planet reaches halfway through its orbit 
when it reaches its aphelion/minimum velocity. 
Comparing its value to that of the NASA fact sheet, 
we calculated the error to see how close our 
simulation is. 

NASA Fact Sheet for Real Data 

 

 

Calculations 

Planet True 
Aphelion 
(10^6 km) 

Sim 
Aphelion 
(10^6 km) 

Aphelion 
Percent Error 

True Min. 
Vel. (km/s) 

Sim Min. Vel 
(km/s) 

Min. Vel 
Percent Error 

Mercury 69.817 69.531 0.41% 38.86 39.024 0.42% 

Venus 108.939 108.878 0.06%  34.79 34.806 0.05%  

Earth 152.099 152.072 0.02% 29.29 29.299 0.03% 

Mars 249.229 248.927 0.12% 21.97 21.99 0.11% 

https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html


Lall, Sun, Wang 6 

%Error = |expected-actual|/expected * 100 

Mercury 

 
Aphelion: |69.817-sqrt(69.526^2+.871^2)|/69.817 * 100 = 0.4% error 
Min. orbital vel: |38.86-sqrt(39.024^2+.104^2)|/38.86 * 100 = 0.4% error 

Venus  

 
Aphelion: |108.939-sqrt(.188177^2+108.878^2)|/108.939 * 100 = 0.056% error 
Min. orbital vel: |34.79-sqrt(34.805^2+.249^2)|/34.79 * 100 = 0.046% error 

Earth 

 
Aphelion: |152.099-sqrt(152.07^2+.825^2)|/152.099 * 100 = 0.017% error 
Min. orbital vel: |29.29-sqrt(29.298^2+.261^2)|/29.29 * 100 = 0.031% error 
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Mars 

 
Aphelion: |249.229-sqrt(248.927^2+.042^2)|/249.229 * 100 = 0.12% error 
Min. orbital vel: |21.97-sqrt(21.994^2+.048^2)|/21.97 * 100 = 0.11% error 

 

Running 
 

Environment 
The sole dependency required is the PyGame library. The specific runtime environment on 
which the project was tested was PyGame version 2.0.0 on Python 3.8.6 on Windows 10 
and Ubuntu 20.04, although any reasonably recent version of Python and operating system 
for which PyGame has official support should work, as we did not use any experimental 
features or OS-specific code. This means this simulation should be compatible for all 
computers as long they have the recent PyGame and Python version. 

Execution 
The simplest way of running the program is to open a terminal prompt, navigate to the 
folder containing the simulation, install PyGame with pip (​pip install pygame​), and run the 
main entry file with ​python main.py​. The simulation will begin paused, and can be started by 
double-tapping the space key. Pressing the space key again will pause and resume the 
simulation, which can be useful for noting the exact movement values of a planet at a 
certain time, especially at higher speeds. The simulation speed can be altered with the 
input box in the upper left-hand corner; we have found one million to be a comfortable 
value. Moving planets have a colored trail to help visualize their orbits, although these 
dissipate after a certain amount of time in order to lessen the impact on performance. To 
view a planet’s information, click the planet in the bottom left corner. 

Demo Video 

https://streamable.com/p3um86

